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Abstract

The behavior of leaky modes along microwave grat-

ings shows that: (1) a Bragg-scattering approach pro-

vides simple design criteria for blazed dielectric

gratings, and (2) broadband, highly efficient, optical
bean-coupling devices using such gratings can be easily
realized.

Summary

Dielectric gratings have been extensively used in

integrated opticsl to convert an incident light beam

into a guided surface wave, or vice-versa. Because

gratings having symmetric profiles can generally couple

energy equally well into both the regions above and be-

low the grating, the maximum coupling efficiency is

usually about 507.. On the other hand, gratings with
“blazed” asymmetrical profiles may theoretically2-7

yield nearly 100% efficiency because they can selec-

tively scatter the energy of a surface wave into only

one of the two regions. At optical wavelengths, the

experimental verification of such a scattering perform-
ance has been limited 8 and the sensitivity of this
blazing effect with frequency or with the grating pa-
rameters cannot easily be assessed. We therefore re-

port here the realization of microwave models for

blaz:d dielectric gratings that strongly discriminate
between the upper and lower regions over a wide range

of grating parameters and wavelengths. In particular,
we have obtained coupling efficiencies higher than 94%
near the band center.

As shown in Fig. 1, the basic geometry of a dielec-

tric optical grating involves a periodic layer super-

imposed on a thin-film waveguide Of thickness tf backed
by a substrate, with nu(u = a, r, f and S) denoting the

refractive index of the upper (air), grating, film and

substrate regions, respectively. For an incident sur-

face wave propagating as exp(i~x), Chatig and Tsmir have
developed a Bragg-scattering approach6 which asserts

that energy leakage is maximized into the upper (air)

rsgion if y2 = O and y2 = yB, where yB satisfies a

Bragg-type condition7
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Here k is the wavelength in vacuum, N = &4/2TT is the

effecti~e refractive index of the optical guide and
= Cgz, where Cg

?$3 .
is the average dielectric constant

Inside the periodic region (O < z < t ). Because the,

parameters ng, N, I. and d are usuallyggiven, relation
(1) together with y2 = O serve as simple criteria for

designing dielectric gratings with strong blazing prop-
erties. Furthermore , these properties are predicted7

to hold over a frequency range given by
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where Af is the maximum frequency increment that is
co~sistent with good blazing performance, i.e.,
‘ila s 90% or larger. For operation at microwave fre-
quencies, the grating structure csn be made of teflon

having air for both the upper and lower regions, so

that nr ~ nf = 1.414 anfl na = n = ~.n. BecaTtso its
s

LLLUL

fundamental TEo mode has electric field components in

the y direction only, the grating can be placed be-
tween metallic conductors without affecting that field,
which is then designated as the TE mode. We have
consequently used an aluminum para !~el-plate arrange-
ment as shewn in Fig. 2, where the x, y and z direc-

tions correspond to those of Fig. 1. The separation
between the plates was taken equal to the height b =
0.4” of an X-band (8-12 GHz) rectangular waveguide,

which fed energy to the grating via a flange coupler.
Because the TE o mode of the rectangular guide is

iwell matched to t e TE mode in the parallel-plate

system, the incoming w~~e is smoothly coupled to the

(leaky) surface wave supported by the teflon grating.
To further improve this ~tch, the input end of the

grating structure was suitably tapered into the rec-

tangular waveguide.
!s th: moo

-mode surface wave
travels down the grat~ng, It leaks power obliquely to
the grating and in a direction parallel to the xz

plane; the field therefore varies longitudinally as

exp(i~x-ax). By probing this scattered power along x
with movable detectors, we have determined: (a) the
ratio between the field amplitudes on the two sides of
the grating, and (b) the decay a of these amplitude
along x.

Illustrative results for @ and ~a are given in

Fig. 3 for a grating that satisfies condition (1) at a

design-center frequency f = 10 GHz. Here Va represents
the percentage of power radiated into the air region

adjacent to the periodic portion of the grating. Thus

‘Tla = 100% implies that all of the surface-wave power is
beamed into the right-hand side region of the parallel

plate in Fig. 2, i.e. , into the upper (air) region in
Figs. 1 and 3. AS seen in Fig. 3, a peak Of la = g8. &L
was actually measured close to the center frequency.
Theoretical data are shown for both ma andak by solid
lines, which were calculated by a very accurate nu~-
ical solution of the exact boundary-value problem.
The measured results are very close to the theoretical

results, which predict a peak value of la = 99.5% at

f = 10.3 GHz. In addition, Eq. (2) implies that
la > 90% for 7.8< f < 12.2 GHz and this range is con-

firmed well in Fig. 3.
By using several such microwave models of optical

gratings and by changing some of the grating para-

meters, we have demonstrated the feasibility of blazed
dielectric gratings showing strong scattering discrim-

ination between the two sidea of their periodic con-

figuration. We have also found that this selectivity
is not affected by practical fabrication tolerances
and that it holds over a broad frequency band. As all
of these results are fully consistent with the Bragg-

scattering approach to the grating operation, the de-
sign criteria derived by that approach can be used to
develop high efficiency beam-coupling devices for in-
tegrated optics, which can operate over wide frequency
bands and which are not subject to stringent fabrica-
tion tolerances.
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Fig. 1. Geometry of the dielectric grating.
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Fig. 3. variation of efficiency ‘fIa and leakage al V.
frequency f for a blazed grating that satia-
fies condition (1) at L = 3.0 cm., in which

case N =’ 1.097 for the ‘rBO mode.

Fig. 2. X-band microwave set-up for measuring models
of optical gratings.
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